Articles

Baterai Li-ion dan solid-state memainkan peran penting dalam kemajuan teknologi modern, dari perangkat elektronik hingga kendaraan listrik. Tantangan utama dalam pengembangan baterai ini adalah meningkatkan efisiensi, daya tahan, dan keamanan, yang memerlukan pemahaman mendalam tentang sifat material elektroda dan elektrolit pada skala nano. Oleh karena itu, diperlukan alat karakterisasi yang tidak hanya memberikan data morfologi permukaan, tetapi juga informasi mekanik dan listrik material secara kuantitatif. Atomic Force Microscopy (AFM) berperan penting dalam riset material baterai karena kemampuannya mendeteksi sifat mekanik, listrik, dan morfologi secara bersamaan. Pemilihan model AFM yang tepat sangat penting untuk mendapatkan hasil yang akurat dan relevan dalam penelitian ini. Dimension Icon AFM dari Bruker menawarkan pengukuran presisi tinggi, termasuk mode PeakForce QNM untuk analisis sifat mekanik seperti modulus elastisitas, kekuatan adhesi, dan deformasi tanpa merusak permukaan. Mode ini sangat berguna dalam memetakan perubahan mekanik pada lapisan elektroda akibat siklus pengisian daya dan memberikan data kuantitatif yang akurat pada permukaan kompleks. Ditambah dengan mode Conductive AFM (C-AFM), alat ini memungkinkan analisis sifat listrik material pada skala nano, menjadikannya solusi lengkap untuk karakterisasi material baterai masa depan.

Basic Mechanical and Electrical Measurements for Li-ion and Solid-State Battery Materials Using AFM

Basic Mechanical and Electrical Measurements for Li-ion and Solid-State Battery Materials Using AFM

Li-ion and solid-state batteries play a crucial role in the advancement of modern technology, from portable electronics to electric vehicles. The main challenge in the development of these batteries is improving efficiency, longevity, and safety, which requires an in-depth understanding of the electrode and electrolyte material properties at the nanoscale. Therefore, a characterization tool is needed that not only provides surface morphology data but also quantifies the mechanical and electrical properties of materials.

Atomic Force Microscopy (AFM) is essential in battery material research due to its ability to simultaneously detect mechanical, electrical, and morphological properties. Selecting the right AFM model is critical to obtaining accurate and relevant results in this field.

The Dimension Icon AFM from Bruker offers high-precision measurements, including the PeakForce QNM mode for analyzing mechanical properties such as elasticity modulus, adhesion strength, and deformation without damaging the surface. This mode is particularly useful for mapping mechanical changes in electrode layers due to repeated charging cycles and provides accurate quantitative data on complex surfaces. With the addition of the Conductive AFM (C-AFM) mode, this instrument enables electrical property analysis of materials at the nanoscale, making it a comprehensive solution for characterizing next-generation battery materials.

Carbon Nanotubes

Simultaneous topography and conductivity mapping of single-wall carbon nanotubes loosely attached to Au-patterned silicon using TR-TUNA, with 1 µm resolution.

 

For example, in battery material research such as carbon nanotubes (CNTs), AFM with TR-TUNA technique can map their conductivity at the nanoscale. This mapping provides valuable insights into the conductivity of CNTs and how their conductive properties interact with other material surfaces within battery components.